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Mean Reflected Mass: A Physically Interpretable Metric for Safety
Assessment and Posture Optimization in Human-Robot Interaction

Thomas Steinecker1,2, Alexander Kurdas1, Nico Mansfeld1, Mazin Hamad1, Robin Jeanne Kirschner1,
Saeed Abdolshah1 and Sami Haddadin1

Abstract— In physical human-robot interaction (pHRI),
safety is a key requirement. As collisions between humans
and robots can generally not be avoided, it must be ensured
that the human is not harmed. The robot reflected mass, the
contact geometry, and the relative velocity between human
and robot are the parameters that have the most significant
influence on human injury severity during a collision. The
reflected mass depends on the robot configuration and can be
optimized especially in kinematically redundant robots. In this
paper, we propose the Mean Reflected Mass (MRM) metric.
The MRM is independent of the direction of contact/motion and
enables assessing and optimizing the robot posture w.r.t. safety.
In contrast to existing metrics, it is physically interpretable,
meaning that it can be related to biomechanical injury data
for realistic and model-independent safety analysis. For the
Franka Emika Panda, we demonstrate in simulation that an
optimization of the robot’s MRM reduces the mean collision
force. Finally, the relevance of the MRM for real pHRI
applications is confirmed through a collision experiment.

I. INTRODUCTION

To ensure safety in physical human-robot interaction
(pHRI) many approaches were introduced, such as safe
mechanism design [1], pre-collision schemes [2], or obstacle
avoidance [3]. In previous impact studies, we analyzed the
role of the reflected mass, i.e., the mass perceived during
a collision [4], and the robot velocity on collision safety
[5], [6]. In [7] it was then proposed to relate the effective
robot mass and the robot velocity to human injury in the
event of a collision. This approach provides a maximum
allowable robot speed based on the instantaneous reflected
mass. During task execution, the robot posture is typically
optimized w.r.t. to a certain safety or performance metric.
Especially in dexterous collaborative robots, the redundant
degrees of freedom can be exploited to perform self-motions
that do not affect the primary task. A typical performance
metric is the manipulability measure [8], which is often used
to avoid singular configurations. In the context of safety, [9]
proposed the so-called danger field, whereas [10] proposed
to minimize the reflected mass in the direction of motion
via self motions. A metric that rates the entire robot posture
in terms of safety performance is the Generalized Impact
Measure [11], which reflects a measure of sensitivity to
impact impulse forces.
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Fig. 1. Mean Reflected Mass: A physically interpretable metric for the
safety assessment and optimization of the robot’s posture in pHRI. By
reconfiguring the robot from the gray to the black configuration, the mean
robot reflected mass is reduced, which improves safety in potential collisions
with humans and higher velocities can be applied for the end-effector.

In this paper, we introduce the Mean Reflected Mass
(MRM) as a novel safety metric. The direction-independent
MRM constitutes the average reflected mass over all potential
collision directions (see Fig. 1) and is expressed in kilogram
and thus physically interpretable. In contrast to other metrics,
the MRM can be directly related to human injury data with-
out the need of simplified collision models or intermediate
quantities such as force or pressure [7]. We elaborate the
MRM in detail and compare the safety performance of our
metric and the Generalized Impact Measure (GIM) [11] for
a certain workspace range of the Franka Emika Panda in
simulation. Furthermore, we conduct impact tests to validate
the approach experimentally.

The remainder of this paper is structured as follows. In
Sec. II, we describe preliminaries. Sec. III introduces the
MRM concept and its mathematical derivation. In Sec. IV, a
comparison of MRM and GIM in terms of simulated collision
force is provided, and a collision experiment is carried out
to evaluate in practice. Finally, Sec. V presents a potential
application of the metric for the Safe Motion Unit concept.

II. PRELIMINARIES

Firstly, we summarize the robot dynamics and terminology
for modeling the reflected mass. We further introduce the
concept of the Safe Motion Unit and explain the well-
established metric for dynamic properties, the GIM.



Reachability Analysis and Safety Map Representation of Stationary and Mobile Robots

5 Safety Map

In the following, the Safety Map representation is derived for Franka Emika Panda and
three mobile robots, each one with a di↵erent structure. The three mobile robots consist
of that manipulator mounted on top of a mobile platform. The chosen mobile platforms
are a car-like, a fork-lift and a di↵erential-drive vehicle, which are based on the made
up robot from [45], the Toyota BT autopilot SAE200 detailed in [52] and the Clearpath
Boxer from [53], respectively. The obtained results are presented and discussed in this
chapter.

5.1 Safety Map for Franka Emika Panda

The Reachability Map determined in Chapter 4 for the robot Franka Emika Panda was
used for the Safety Map derivation. The Reachability map had a grid distance of 5
cm and considered null-space configurations, self-collisions and joint limits constraints.
Twenty points were placed at each sphere and no rotation on the end-e↵ector frame was
considered, being a total of 20 end-e↵ector poses per grid point. For each configuration
obtained from the reachability map algorithm, the reflected mass and maximum velocity
at the end-e↵ector were calculated for 20 uniformly distributed Cartesian directions. This
amount of directions lead to the coverage of su�cient values to create a Safety map that
express properly the Safety characteristics of the manipulator. To obtain the global dy-
namic properties of the robot, the inertial parameters of Franka Emika Panda were taken
from [39].

The reflected mass at each direction of motion was computed using Khatib’s definition,
Eq.(3.38), having previously calculated the Cartesian mass matrix inverse for the corre-
sponding robot configuration as shown in Eq.(3.39). Regarding the maximum velocity,
it could be obtained by means of the Translational Manipulability Polytope either in
weak sense (TMPws) or in strong sense (TMPss). In both cases, the polytope for the
corresponding robot configurations is computed as explained in the ”Kinematics and

Figure 39: Belted-ellipsoid and Velocity polytopes for a certain configuration of Franka Emika Panda.
The belted ellipsoid is shown on the left. On the right, the TMPws (blue) and the TMPss (red) for the
same configuration are depicted. Note that the tool also appears on the images but it is not considered
for obtaining the results.

CHAPTER 5 SAFETY MAP 67

Fig. 2. In this figure, the belted ellipsoid for the Franka Emika Panda
is illustrated. It describes the reflected mass in each direction for a given
point of a robot, e.g., the end-effector. The belted ellipsoid can be obtained
mathematically by squaring the radii of an ellipsoid.

A. Reflected Mass Modeling

The rigid dynamics for a n-joint robot can be expressed
as follows

M(q)q̈ +C(q, q̇) + g(q) = τττ , (1)

where q ∈ Rn are the generalized coordinates, M(q) ∈
Rn×n represents the mass matrix, C(q) ∈ Rn the Coriolis
and centrifugal forces, g(q) ∈ Rn are the forces due to
gravity, and τττ ∈ Rn are the joint torques. By taking the first
derivative of the forward kinematics with respect to time, the
following relationship for the Cartesian robot end-effector
velocity is obtained

ẋ = J(q)q̇ =

[
Jv(q)
Jw(q)

]
q̇ , (2)

where J(q) ∈ R6×n is the Jacobian matrix. The Jacobian
matrices Jv(q) ∈ R3×n and Jw(q) ∈ R3×n represent a lin-
ear mapping between the translational velocities and angular
velocities in joint space and Cartesian space, respectively.
The Cartesian mass matrix (also referred to as Cartesian
kinetic energy matrix (KEM)) is given by [4]

ΛΛΛ(x) = (J(q)M(q)−1J(q)T)−1 . (3)

The inverse of this matrix is

Λ(q)−1 = J(q)M (q)−1J(q)T =

[
Λv(q)

−1 Λvω(q)
Λvω(q)

T Λω(q)
−1

]
,

(4)
where Λv(q)

−1, Λω(q)
−1 and Λvω(q)

T ∈ R3×3 are the
translational, rotational and coupling matrices, respectively.
Finally, the reflected robot mass is given by

mu(q) = [uTΛΛΛv(q)
−1u]−1 , (5)

where u ∈ R3 denotes the evaluation direction. The reflected
mass can be represented by a belted ellipsoid (see Fig. 2),
which is obtained by squaring the distances of an ellipsoid
between the center and its surface.
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Fig. 3. The figure shows an exemplary safety curve with a spherical
impactor of radius 12.5mm [10]. For a reflected mass m∗

u of 5 kg the
robot can move with a velocity v∗max of about 2.8m/s. As the reflected
mass decreases, the robot can proceed faster or be considered safer for the
same velocity.

B. Safe Motion Unit
Based on the reflected mass a concept for safe pHRI

namely the Safe Motion Unit (SMU) was introduced [7]. The
concept is based on a collection of biomechanical injury data
[12], which is mapped to the relative human-robot velocity,
reflected mass, robot geometry at the location of the potential
collision, and the body part of the human at collision. To
embed this knowledge into the robot control a threshold for
acceptable injuries, i.e., contusion without skin opening, was
set. Furthermore, so-called safety curves which provide the
maximum allowed robot velocity based on the reflected mass
were defined, see Fig. 3. Generally, lower reflected mass
results in higher safe robot velocity. During task execution,
the positions of the human body parts, such as head or hand
are tracked and the robot geometry for potential collisions is
evaluated. Based on the safety curves for the corresponding
human and robot point of interest (POI), safe velocities are
identified, and the most conservative of which is considered.

C. Generalized Impact Measure
In [11], a global metric for the dynamic properties of the

robot end-effector for specific configuration was introduced,
namely the Generalized Impact Measure (GIM). This metric
is defined as

wGIM =
√
det((Jv(q)M(q)−1Jv(q)T)−1) , (6)

which equals the product of the square root of the eigenvalues
from the inverse of the KEM. Intuitively speaking, the GIM
expresses how difficult it would be for a human to move
the end-effector along a translational path in Cartesian space
[13]. However, it is devoid of any physical interpretation,
made evident by the unit of the metric being kg

3
2 .

III. METHODOLOGY

In this section, we derive the MRM and analyze its
properties. First, we elaborate on the meaning and motivation
of the MRM. We then establish a relationship between the
MRM and the well-known manipulability measure. Finally,
the role of this metric in the context of safety concepts based
on biomechanical injury data is described.



A. Motivation
Real pHRI, including one or multiple human co-workers,

requires the consideration of numerous POIs to ensure safety
[7], [10]. By definition, the reflected mass refers to a single
POI, as the calculation of the mass requires the knowledge of
the direction of the collision and the point of contact. Obtain-
ing this direction in real applications requires reliable sensing
of human body parts which adds noise to the calculation, is
conceivably not real-time capable, and results in high compu-
tational load. Therefore, we aim for a direction-independent
metric, which allows optimizing the robot motion velocity by
ensuring low injury potential. The GIM (cf. II-C) represents a
direction-independent metric, which has been defined, among
other applications, for safety-critical applications. However,
it lacks physical interpretations by definition. Moreover, it
does not consider the reflected mass for calculation, but its
square root, consequently this metric is proportional to the
volume of the ellipsoid, which is shown in Fig. 4.

Therefore, we introduce a safety-related metric using the
average reflected mass in each direction, which reduces the
risk of injury equally in each Cartesian direction and is
physically meaningful and thus quantitatively assessable. The
average reflected mass in each direction expresses the amount
of reflected mass that is expected on average over an infinite
time horizon and thus it is expressed quantitatively by kg.

For safe pHRI applications, the maximum reflected mass
appears to play an important role, but we would like to
point out that for the concept of the SMU, the severity of
a collision is not solely dependent on the mass but on the
mass-velocity pair as illustrated in Fig. 3. Thus, safety should
be ensured primarily by adhering to the safety curves, while
generally providing for a low reflected mass to increase the
speed of the robot.

B. Derivation of the Mean Reflected Mass
In the following, the Mean Reflected Mass (MRM) is

mathematically derived considering the ellipsoid based on
the inverse of the KEM described as

uTΛΛΛv(q)
−1u = 1, (7)

where u ∈ {U} represents the unit direction in R3. The
ellipsoid represents the root of the actual reflected mass and
can also be expressed as

x2

a2
+

y2

b2
+

z2

c2
= 1 . (8)

The parameters a, b, and c represent the half-lengths of the
major axis of the ellipsoid described in (7) and illustrated in
Fig. 4. However, to derive the MRM, an explicit represen-
tation of the coordinates is required, which can be specified
as xy

z

 = r

cos(γ) cos(λ)cos(γ) sin(λ)
sin(γ)

 , (9)

where

r =
abc√

c2(b2 cos(λ)2 + a2 sin(λ)2) cos(γ)2 + a2b2 sin(γ)2
.

(10)

Fig. 4. The figure qualitatively illustrates a belted ellipsoid in planar case.
The ellipsoid (ellipse) represents the root of the reflected mass and thus
the GIM calculates the product of its eigenvalues. To obtain the actual
reflected mass, the length must be squared to obtain the belted ellipsoid
(belted ellipse). The direction of the eigenvectors define the orientation
of the ellipsoid (ellipse) and the square root of the associated eigenvalue
defines the magnitude. The belted ellipsoid is thus completely defined by
the eigenvalues and eigenvectors.

Fig. 5. In the figure the spherical coordinates are shown. It can be seen that
with increasing γ, the circumference is scaled with factor cos(γ). Thus the
density of the directions decreases by a whole rotation by λ with increasing
γ and this must be taken into account for the integration.

It should be noted that γ and λ are the true spherical angles
of the ellipsoid. To obtain the actual reflected mass, r has
to be squared. An explicit expression has been obtained for
which the reflected mass can be calculated depending on the
angles γ and λ, given the eigenvalues. In order to calculate
the MRM, it is necessary to sum the reflected mass over all
directions and then divide by the total number of directions

m̄u =

∑
u∈{U} mu(q)

numel({U})
. (11)

However, for the integration over all directions the
parametrization in (9) must be taken into account. Fig. 5
illustrates the increase of the density of directions with
increasing angle γ due to the parametrization. Consequently,
we integrate over all radii and divide by the integration over
the density of directions, which yields the following result

m̄u =

∫ π/2

0

∫ π/2

0
r2 cos(γ)dλdγ∫ π/2

0

∫ π/2

0
cos(γ)dλdγ

=
2
∫ π/2

0

∫ π/2

0
r2 cos(γ)dλdγ

π
.

(12)

We make use of the symmetry properties of the belted
ellipsoid and consider only one eighth of the entire body
for our integration limits.



As (12) cannot be solved analytically, numerical meth-
ods are required. Since it involves a double integral, the
numerical computational effort is demanding for real-time
applications. In this case estimators can provide a suitable
solution. Common methods for approximation functions are
Gaussian processes or artificial neural networks. For this
work, we used artificial neural networks due to their maturity
and inherent scalability for large data sets. The training data
can be obtained from the numerical computation of (12) and
then an estimator of the following form is obtained

m̄u = fNN (a, b, c). (13)

We perform a validation test for this estimator (3 layers
with 10 neurons each) for a set of 105 data points ranging
from 0−100 kg with an accuracy of 16 significant digits
which results in a root mean square error of 8 · 10−4kg.
The average execution time for 106 executions on an Apple
M1 chip was 0.031ms, which proves the feasibility of the
neural network approach. It is noteworthy that this estimator
can be used generically for all holonomic robots, since the
input variables depend only on the eigenvalues of the KEM
and not on specific robot parameters.

C. Relation to Manipulability

In this section, the relation between the MRM and the ma-
nipulability is considered. The manipulability was introduced
in [8] and can be written as follows

wmani =

√
det

([
Jv(q)
Jw(q)

] [
Jv(q)

TJw(q)
T
]T)

=

√
det

([
Jv(q)Jv(q)

T Jv(q)Jw(q)
T

Jw(q)Jv(q)
T Jw(q)Jw(q)

T

])
.

(14)

From (3) we observe that if the manipulability has a
singularity, then so does the inverse of the KEM. However,
since only the translational Jacobian is considered, this is also
true only for the translational part of the manipulability. A
singularity of the KEM correlates with at least one infinitely
large eigenvalue, and thus the MRM is also infinitely large.
Conversely, it can be shown that optimizing the MRM also
avoids singularities of the translational manipulability. An
intuitive explanation is that the inverse of the KEM can
be interpreted as the weighted manipulability metric where
the weighting factor depends on the inertia of the current
configuration.

For manipulability, the primary focus is often on avoiding
translational and rotational singularities. To account for the
rotational manipulability in our MRM optimization, we con-
sider the rotational and coupling part of the manipulability
(14) in addition to the MRM

w̃mani =
√
det(Jv(q)Jv(q)T − Jv(q)Jw(q)T) → max

q
.

(15)
Here, the coupling term Jv(q)Jw(q)

T avoids a linear de-
pendency between the rows of translational and rotational
parts of the manipulability measure.

D. Relation to Injury Data

In contrast to many other metrics proposed in robotics
literature, the MRM is physically interpretable. This makes
the MRM compatible with the data-driven approach proposed
in [7], e.g., where the relationship (mass, velocity, curvature)
→ injury was established. This means that the MRM can
be directly related to human injury data and used for the
generation of biomechanically safe robot motions.

IV. VALIDATION

In this section, we first investigate the correlation between
the MRM and collision force in simulation and then demon-
strate the practicality of this metric for pHRI applications
using an unconstrained collision test setup.

A. Metrics Comparison

In the following, the correlation between collision force
and MRM is investigated and compared to the GIM. The
modeled collision force based on a mass-spring system,
which was found to be an essential parameter for pHRI
applications [5], [14], [15], can be represented as follows
for the unconstrained case [14]

Fc(mu) =

√
muMH

mu +MH

√
KH v0re, (16)

where MH is the weight of the human body part, KH is
the contact stiffness and v0re is the relative velocity between
human and robot. We exemplarily consider a collision with
the human head, where MH = 4.5 kg, KH = 1000N/mm
and v0re = 1m/s [16].

We calculate the MRM, GIM, and unconstrained collision
forces for the Franka Emika Panda robot inside its reference
cube given by ISO 9283 [17]. The reference cube has side
length 0.4m and its center is located at [0.515 0 0.226]T,
as provided by the robot’s datasheet1. Furthermore, the
orientation is specified for the end-effector along the z0-axis.

The evaluation in the cube is performed as follows:
1. All discretized null-space configurations of the robot are

determined,
2. for each metric, the smallest value within the reachable

null-space configuration is determined,
3. the mean collision forces are calculated for these con-

figurations via (16),
4. the obtained forces are compared to the minimum

possible forces over all null-space configurations.
To illustrate the results, all configurations are averaged

over the distance to the z0-axis, or in other words over the
radial distance to the z0-axis. The results for this evaluation
are depicted in Fig. 6. The results show that the minima of
both the MRM and the GIM are similar to the minimum
mean collision force over all radial distances.

The reason that the GIM performs worse in approximating
the minima is that it calculates the product of the root of the
eigenvalues, which takes all directions into account but sets

1https://wiredworkers.io/wp-content/uploads/2019/
12/Panda\_FrankaEmika\_ENG.pdf
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Fig. 6. The figure compares the global minima of the MRM, GIM and
mean collision force evaluated as mean collision force. The global minima
are determined for each null-space configuration, and the correlating value of
the mean collision force is determined. The considered configuration space
is defined according to ISO 9283 [17]. The values represent the average
over each radius around the z0-axis.
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Fig. 7. The figure compares the global minima of the GIM and the
MRM evaluated as MRM. The global minima are determined for each null-
space configuration, and the correlating value of the MRM for the GIM is
determined. The examined configuration space is defined according to ISO
9283 [17]. The values represent the average over each radius around the
z0-axis.

their weighting purely on the magnitude of the eigenvalues.
Thus, a large eigenvalue is weighted proportionally to its
magnitude, regardless of how much it contributes over the
entire belted ellipsoid. The MRM, on the other hand, consid-
ers the overall structure of the belted ellipsoid and evaluates
all individual directions. The relation of the collision force
as shown in (16) is non-linear and monotonically increasing
with respect to the reflected mass. Thus, the progression
of the MRM metric which is based on the reflected mass,
differs from the mean collision force progression, and a direct
scaling between the two is not possible.

In the following, analogous to the minimum collision
force comparison, the minimum MRM is plotted over the
ISO cube and the MRM value for the minima of the GIM
metric depicted in Fig. 7. As expected from the previous
observation, the figure shows a similarity between the MRM
and the GIM with respect to their minima. However, unlike
the GIM, the MRM results provide qualitative statements,
e.g., for the Franka Emika Panda, the reflected mass can be
optimized to an agerage of 1.25 kg to 1.32 kg over the entire
robot reference cube by a suitable control strategy.

B. Validation of MRM as safety metric

In the following, we validate the MRM as safety-relevant
metric. For this, we model two collision scenarios of a Franka
Emika Panda robot with an unconstrained mass and use
two null-space configurations comprising maximum qmax

and minimum qmin MRM. We repeat the collisions three

a) b)

Fig. 8. Experimental setup for validation of the MRM as a safety-relevant
metric where a) depicts the collision at qmin and b) at qmax.

TABLE I
RESULTS FOR VALIDATION TEST

Scenario Configuration Collision force [N]

I qmin 121.84± 1.72
qmax 149.05± 6.49

II qmin 38.99± 0.18
qmax 56.17± 1.28

times, measure the occurring peak forces, and obtain the
average force and standard deviation. We compare whether
the results differ significantly to assess the safety-relevance
of our proposed metric in collision scenarios.

The experimental setup, depicted in Fig. 8, consists of a
pendulum device as described in [18], with 1 kg additional
load and a damping cover with 75 ShA. The MRM at the
point of collision is 1.38 kg and 2.75 kg for qmin and qmax,
respectively. A 6-DoF force-torque sensor2 is attached to the
pendulum collision plate, measuring the occurring collision
force at 300Hz. We apply the joint angles

a) qmin = {1.81,−1.76,−0.75,−2.43,−2.35, 1.86,−2.27},
b) qmax = {1.06,−0.98,−0.78,−2.30,−2.08, 2.63,−1.70},

for the robot and collide for the first scenario (I) with a robot
velocity of vr = 300mm/s and in the second scenario (II)
vr = 150mm/s. The resulting collision forces are listed in
Tab. I. The resulting difference of ≈ 20% in scenario (I)
and ≈ 30% in scenario (II) show a significant, velocity-
independent change of the hazard potential when applying
our safety metric.

C. Discussion

By comparing the minimum mean collision force and
the minimum MRM over the robot’s reference cube, we
show that the two quantities strongly correlate, implying
that optimization with respect to the MRM will strive for
configurations that reduce the severity of harm caused by a
potential impact as much as possible in all directions. For the
MRM, a linear accumulation of all directions is considered.
Hence this measure can provide an approximation of the
mean collision force without taking into account the external
parameters such as weight of the human body part or its
stiffness.
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Secondly, we show by means of a practical collision test
that the minima of the metric correlate with lower forces in
the collision and thus the safety of the human can be ensured
for higher robot motion velocities which increases the robot
performance.

As pointed out in Sec. III-B, no analytical expression for
the MRM can be derived, hence the mathematical relation-
ship between the robot configuration and the MRM remains
unclear. Although it is possible to evaluate the MRM for a
given robot and thus the suitability for pHRI applications as
shown in Fig. 6. Due to the lack of an analytical expression,
the reverse cannot be done and a suitable robot design
strategies cannot be found based on intrinsic MRM insights.

V. MRM IN THE CONTEXT OF THE SAFE MOTION UNIT

In this section, we present the potential of MRM for the
Safe Motion Unit (SMU). The SMU is based on biomechan-
ical injury data and represents a relationship between the
reflected mass and the maximum allowable robot velocity.
The reflected mass is a quantity that depends on both the
configuration and a Cartesian direction, which is usually
the measured position of the human. However, in pHRI
applications, it is possible that the most endangered body
part (from the controller’s point of view) changes abruptly,
e.g., from the hand to the head. In addition, the measurement
noise and perceptual inaccuracy may not be reliable enough
for pHRI applications.

This is where the MRM can provide a remedy due to
its independence from external parameters and its link to
biomechanical injury data. The MRM represents an average
value in mass that can be expected in a collision, and through
this interpretation it can directly make a statement based on
biomechanical injury data. The SMU is a control concept
that adjusts velocity based on injury-related parameters. By
coupling with the MRM for optimization, mass can be
reduced in all directions and control can be decoupled from
velocity adjustment. As shown in Sec. III-B, the MRM can be
computed in real-time, thus making this approach plausible.

In the following, we propose a more sophisticated control
concept analogous to the reflected mass control in [10] that
attempts to achieve the global minima of the MRM:

1. Analyze the entire self-motion manifolds of a robot, as
shown in [19], [20].

2. A discretized set of all relevant robot configurations
over all null-space configurations for which the MRM
is minimal are calculated offline. These configurations
are then stored in a database.

3. Throughout control, the configurations from the
database are utilized as attractive minima for redun-
dancy resolution optimization.

With this control approach, the global minima are approx-
imated, and thus MRM values can be achieved for the
configurations as defined in ISO 9283 [17] for the Franka
Emika Panda, as described in Fig. 7.

VI. CONCLUSION

In this paper, we proposed the Mean Reflected Mass
(MRM), a metric for safety assessment and posture opti-
mization in physical human-robot interaction (pHRI). We
investigated the performance of the MRM in simulation
for a typical workspace area of the Franka Emika Panda
robot and validated the metric in collision experiments.
In comparison to existing safety metrics, the MRM has a
real physical interpretation, it is the configuration-dependent
average reflected mass in all directions. The MRM can be
directly related to human injury data, which makes it a
powerful and meaningful metric for robot motion control.

ACKNOWLEDGEMENTS

This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme as part of the
projects DARKO (grant no. 101017274), and I.AM. (grant
no. 871899). Furthermore, we gratefully acknowledge the
support of the Lighthouse Initiative KI.FABRIK Bayern by
StMWi Bayern (KI.FABRIK Bayern Phase 1: Aufbau In-
frastruktur and KI.Fabrik Bayern Forschungs- und Entwick-
lungsprojekt, grant no. DIK0249), the Lighthouse Initiative
Geriatronics by StMWi Bayern (Project X, grant no. IUK-
1807-0007// IUK582/001), and the LongLeif GaPa gGmbH
(Project Y). The authors would like to thank the Bavarian
State Ministry for Economic Affairs, Regional Development
and Energy (StMWi) for financial support as part of the
project SafeRoBAY (grant no. DIK0203/01). Please note that
S. Haddadin has a potential conflict of interest as shareholder
of Franka Emika GmbH.

REFERENCES

[1] K. Ikuta, H. Ishii, and M. Nokata, “Safety evaluation method of
design and control for human-care robots,” The International Journal
of Robotics Research, vol. 22, no. 5, pp. 281–297, 2003.
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